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Abstract— This paper focuses on tracking failure avoidance
during vision-based navigation to a desired goal in unknown
environments. While using feature-based Visual Simultaneous
Localization and Mapping (VSLAM), continuous identification
and association of map points are required during motion.
Thus, we discuss a motion planning framework that takes into
account sensory constraints for a reliable navigation. We use
information available in the SLAM and propose a data-driven
approach to predict the number of map points associated in a
given pose. Then, a distance-optimal path planner utilizes the
model to constrain paths such that the number of associated
map points in each pose is above a threshold. We also include
an online mapping of the environment for collision avoidance.
Overall, we propose an iterative motion planning framework
that enables real-time replanning after the acquisition of more
information. Experiments in two environments demonstrate the
performance of the proposed framework.

I. INTRODUCTION

Navigation of mobile agents in unknown environments

is an important capability for autonomous robotic systems.

Exploration [1], area coverage [2] and search and rescue, are

some of the applications for autonomous navigation in which

the agent must act efficiently to traverse the environment.

The robot must map and avoid collisions, and localize itself

while approaching a desired goal. Normally, sampling-based

motion planning algorithms are easily utilized for known

environments [3]. However, in uncertain and unknown en-

vironments the planner uses limited sensory feedback to

enforce constraints. Vision offers a low-cost source of rich

information of the environment.
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Fig. 1. A mobile robot moving along a planned path around a corner.
Green lines are feature-rich areas seen by the robot while moving along
the path. The red line is a hidden feature-rich area which is not seen while
traversing the path. Tracking failure occurs in the third pose.

Visual Simultaneous Localization and Mapping (VSLAM)

[4] deals with using sequential images to estimate the pose

of one or more cameras and construct the map of the

environment simultaneously in real time. Due to the low

cost of the cameras and rich information from the images,

VSLAM has attracted significant research attention in the

last two decades. However, VSLAM still remains an open

problem due to robustness issues [4]. In this paper, we

identify one specific type of failure termed tracking failure
[5]. Tracking failure refers to the incapability of associating

features in the current image to map points in VSLAM. In

other words, VSLAM cannot observe enough map points in

order to localize itself with respect to the map currently being

constructed. Tracking failure of VSLAM systems can result

in inaccurate pose estimation and catastrophic results, such

as the crash of aerial robots. Figure 1 illustrates a tracking

failure example. Here, the robot moves on a pre-planned

collision-free path while trying to make a turn at the corner.

The tracking is fine during the initial motion (poses 1 and

2) due to enough visible features along the path. However,

when the robot makes an attempt to turn (pose 3), tracking

failure occurs because the topmost wall is poor of features.

In modern feature-based VSLAM systems, such as ORB-

SLAM [5], a threshold is commonly used to determine

the tracking failure. When the number of associated map

points is lower than the threshold, the tracking is declared as

failed. Figure 2 shows the relationship between the number

of associated map points and the probability of observing

tracking failure within the next five images. The data was

acquired by running ORB-SLAM on two challenging se-

quences in EuRoC MAV [6] datasets (Vicon Room 1 03 and

Room 2 03). Each sequence is evaluated for 50 times with

different thresholds (3, 10, 20 and 30). It is obvious that

more associated map points correlate to lower probability

of tracking failure. Although lowering the threshold for a

lower number of associated map points (between 30 and 50)

will reduce the probability of failure, the gained benefit is

marginal. In other words, merely varying the threshold offers

a limited benefit. Increasing the number of associated map

points, however, is significantly more beneficial. Thus, this

motivates the necessity of actively adjusting the camera pose

to reduce the probability of tracking failure and having more

associated map points.

In this paper, our goal is to actively plan a path of

a mobile robot to a goal while avoiding tracking failure.

There are several challenges related to this task. The first

challenge is efficiently approximating the map points that

can be associated from a specific pose. We address this

challenge by proposing a data-driven Map points Association
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Fig. 2. The relationship between the number of observed map points
and probability of tracking failure with monocular ORB SLAM on EuRoC
dataset Vicon Room 1 03 and Vicon Room 2 03 sequences.

Model (MAM). The second challenge is related to real-time

path planning under the VSLAM constraint. In particular, we

must constrain the path based on the MAM such that it is

feature-rich. We use a distance-optimal RRT* [7] planner

and constrain the path to be collision-free and keep the

number of tracked map points above a threshold. However,

the environment map and the SLAM map are not a priori

known and need to be constructed incrementally on the fly.

Thus, replanning must be performed after the gathering of

more information. In the example of Figure 1, the robot can

explore its immediate surroundings from the last feasible

pose of the contemporary path (for instance, just before pose

3). Thus, new map points would be initialized. This new

information will provide the planner with more opportunities

to replan a new feasible path toward the goal. If exploration

is avoided, the robot will continue replanning but fail to find

a feasible path due to limited information. The notion of

frontier proximity exploration for uncertainties reduction will

be discussed in this paper.

The main contributions of this paper are the identification

of the particular tracking failure and the proposition of a

navigation framework to avoid such failure. We propose to

exploit internal data of the SLAM to approximate the number

of associated map points and use it to constrain the path in

a real-time distance-optimal planner. The implementation of

the framework in ROS is open-sourced and available online.

II. RELATED WORK

Active perception has roots in the seminal work of Bajcsy

[8]. In the paper, the author points out that sensory perfor-

mance can be improved by proper selection of control. Since

then, efforts are made to integrate perception, path planning

and control, such as in [9] and [10]. In [9], the authors pro-

pose a planning framework for active localization, whereas

[10] focuses on information acquisition with multiple robots.

However, neither of them focus on visual navigation. The

integration of visual sensing with planning and control is

commonly referred to as active vision or a Next-Best-View

(NBV) problem. Prominent work in active vision by Davison

and Murray [11] try to control two movable cameras on a

ground robot to reduce uncertainty during localization. Map

points were observed in the direction perpendicular to the

uncertainty. Planning in the belief space such as in [12] and

[13] have been applied to active vision as well. In [12], the

authors exploit Rapidly-exploring Random Brief Trees [14]

to plan a path which minimizes the localization uncertainty

and considers the predicted measurements along the path

with sensor models. However the approach assumes a known

map, and the path planning is performed offline. In [13],

the authors consider photometric information and perform

online path-planning. However, the map is still assumed to

be known.

Significant progress has been made in VSLAM over the

last two decades. There are some successful open source

VSLAM systems [5], [15], and VSLAM has been practi-

cally applied in fields such as autonomous robot navigation

and, virtual and augmented reality [15], [16]. One major

breakthrough in VSLAM is the PTAM by Klein and Murray

[15], which separates the VSLAM problem into two threads:

tracking and mapping to ensure accuracy and real-time

performance. However, most of the VSLAM systems are

performed passively. Active VSLAM deals with the problem

of motion planning concurrently with VSLAM.

Bryson and Sukkarieh select control actions based on

overall map quality in [17]. The map quality is indicated

by using mutual information. In [18], the authors propose

a framework called Perception-Driven Navigation (PDN),

which enables the robot to revisit the previous explored

visual salient area to reduce the uncertainty of SLAM. The

authors use the covariance matrix of the estimated pose to

indicate the uncertainty. In [19], the authors propose a path

planning method to make VSLAM focus on feature-rich

areas. In order to compute the density of features, a 3D

mesh grid is built upon the sparse point cloud provided by

PTAM [15]. An RRT* [7] based path planning algorithm is

developed to minimize the cost function which considers the

distance to the goal position and the feature density. In [20],

the authors introduce a metric to evaluate the localization

stability based on the observations, viewing angles, scale, and

depth of map points. A path planning module is developed

to ensure that the localization quality is high.

The failure of VSLAM systems and its avoidance by

constraining the camera motion are not discussed explicitly

in [18] and [19]. In addition, a mesh grid is built in [19] to

inform the density of map points, which can be expensive.

The work in [20] is probably the most relevant to our work

due to its focus on localization stability. However, the reasons

for VSLAM failure are not discussed. Lacking of intuition,

the proposed metric imposes difficulties in application. In

addition, the experiments for real-world navigation are lim-

ited to a two-meter cubic space. In our work, we show a

navigation framework that enables a ground robot to traverse

through a much larger VSLAM challenging environment like

the one shown in Figure 1.

III. PROBLEM FORMULATION

We consider a mobile robot operating in an indoor 2D

enviroment with static obstacles. Let C ⊂ R
2 × S be the

configuration space of the robot in the plane. In addition,

let Cobs ⊂ C be a restricted region due to obstacles. The

free configuration space is defined by Cfree = C \ Cobs. We

note that any a-priori knowledge of Cobs is not available. We
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also assume that Cfree is a path-connected subspace of C.

The robot is equipped only with a Kinect-style camera able

to provide RGB and depth images in real-time and at high

rates. In addition, let xs ∈ C and xg ∈ C be the current and

goal positions of the robot, respectively. The robot’s main

objective is to reach the goal configuration while avoiding

collisions with the obstacles.

The above problem is a general motion problem formu-

lation. However, the unknown environment and the lack of

direct location sensing impose some challanges. In particular,

reliable localization is essential for collision avoidance and

trajectory following when traversing a path to the goal.

Thus, a motion planning strategy is required that uses gained

information from the environement to find a feasible path to

the goal. A feasible path is the one that is collision-free and

enables the robot to traverse it without tracking failures. By

definition, tracking failure would occure when the number

of features seen by the camera is below a given threshold λ.

If the number of features is below λ, the robot might lose

its location and fail to reach the goal. Let F : C → Z be

a map that yields the number of features seen at a given

robot configuration. Therefore, the motion planning problem

is now to find a path α : [0, 1] → Co where

Co = {x ∈ C : x ∈ Cfree, F (x) ≥ λ}, (1)

such that α(0) = xs and α(1) = xg . We note however that

Cfree and F are not known in advance and impose another

challange addressed in this paper. Thus, feature-based VS-

LAM will be used to provide real-time approximation of

Cfree and F , i.e., C̃free and F̃ .

IV. COMPUTING ASSOCIATED MAP POINTS

In order to plan a path P that satisfies P ⊂ Co, an

approximation of map F must be obtained. Such map is

termed the Map points Association Model (MAM), which

is used to predict the number of associated map points in

a given state. Let D be the contemporary set of acquired

map points and denote one map point as p
(i)
R ∈ D, where

R is the reference frame for the map point, i as the index

of the map point. Let TOR(x) ∈ SE(3) be the rigid body

transformation from R to the camera frame O. The map

point’s coordinate in the camera frame can be computed by

p
(i)
O = TOR(x)p

(i)
R . The projection p̃i of the map point onto

the image plane is computed as

p̃i = Π(p
(i)
O ) (2)

where Π : R
3 → Z

2 represents the geometric projection

model [21]. For a map point to be included, it must satisfy

three conditions illustrated in Figure 3. First, we check if

the map point is within the camera’s field of view (condition

1). For each map point in VSLAM, we can retrieve its

descriptor information. Thus, we define a scale invariance

region (dmin, dmax) and distance d between the camera

center and the map point. The second condition states that

map points which satisfy d ∈ (dmin, dmax) are kept while

others are discarded due to difficulty of descriptor association

(condition 2).

In keyframe-based VSLAM, map points are jointly op-

timized with one or more keyframes. With the poses of

keyframes related to the map point, we can compute its

viewing direction from these keyframes, and their mean

(mean keyframe viewing direction). The viewing angle dif-

ference α between the mean keyframe viewing direction and

the current viewing direction x is then computed. Because

different viewing angles might cause difficulty in descriptors

associating, map points must satisfy the third condition:

α < αmax, where αmax can be determined by the rotation

invariance of the descriptor (condition 3).

Due to noise in the images and randomness in VSLAM’s

data association, the map points which satisfy the three

conditions above may still not be recognized and associated

to features in the images. We apply a data driven approach to

address this problem. When we apply VSLAM to a sequence

of images, we count the number of times each map point

satisfies the conditions (n
(i)
s ) and is successfully associated

(n
(i)
a ). A ratio v(i) ∈ [0, 1] between n

(i)
a and n

(i)
s is computed

to indicate the association probability of this map point.

By denoting the set of map points that satisfy the three

conditions as D̃, the camera model can be represented as:

F̃D(x) = [
∑

i

v(i)], ∀p(i)
R ∈ D̃. (3)

camera

center

�

min.

range

max.

range

visible map pt.
invisible map pt.

image plane
KF line of sight

keyframe �KF)

camera line of sight
mean line of sight

�m�x

Fig. 3. Map points approximation model for computing the number of
visible map points in VSLAM.

V. NAVIGATION FRAMEWORK

A. Overview

The objective of the robot is to reach the goal while

avoiding obstacles. We use a distance-optimal path planner

to plan a path to the goal. However, since the environment

is unknown, the robot must construct a map to reduce

uncertainties, identify obstacles, and localize. Localization

is done using VSLAM for state estimation. Mapping the

environment to reduce uncertainties is done by classifying

the space in a grid structure. Then, frontier regions marking

the bounds between unoccupied and unexplored regions are

identified. These frontier regions are potential exploration

targets to reduce uncertainties.

The planner constrains the path to cross only in explored

collision-free and feature-rich regions. Thus, a direct path

from the start state reaching the goal is unlikely to be ac-

quired due to uncertainties. Therefore, we perform a series of

replannings to acquire more information. In each replanning,

7235



a path will be outputted reaching the most advanced state

toward the goal. After each traverse of the goal, we perform

an uncertainty reduction operation where the robot rotates in

place toward frontier regions in its proximity. This simple

step increases the explored space and provides the planner

with more opportunities to approach the goal. These steps

are described in the following subsections.

B. Proximity exploration

During motion, a map is built as a 3D grid structure using

OctoMap [22] and is later projected to the 2D floor plane.

Similar to [23], each cell in the map is classified into four

states: unexplored, occupied, free or frontier. Unexplored

regions contain cells which sensory information is not yet

available. Occupied cells contain obstacles and cannot be

visited, while free cells are explored cells that are free of

obstacles. Frontier cells are defined to be free cells that

have at least one unknown neighbor cell. They are identified

based on the extraction algorithm described in [23]. Let

C̃free and C̃obs be the contemporary approximations of Cfree
and Cobs, respectively. In each update of C̃free and C̃obs
(in OctoMap), unexplored cells now marked as free are

checked whether they have at least one neighbor. In this

process, OctoMap constructs and maintains a map structure

M = {C̃free, C̃obs, Cfro} in real-time. Subset Cfro is the

contemporary information of the frontier cells. Cells in Cfro
are treated as obstacles in the motion planning until they are

marked as free with further gain of information.

During the traverse of a planned path, more sensory data

is taken and the frontier boundaries are pushed back, i.e.,

the known region grows larger. With that exploration, more

features are acquired for the motion planner. However, some

regions are less likely to be approached for exploration

due to tracking failure avoidance (discussed in the planning

section). Thus, to reduce uncertainties along the path and pro-

vide the planner with more information, after each traverse

of a planned path, the robot will rotate toward unexplored

regions within its proximity. In particular, the robot will

try to have a direct line of sight to unexplored regions. In

order to do so, we identify a set of frontier cell clusters W
as proposed in [23] and represent them by their geometric

center. Then, after each traversed path, the robot will attempt

to rotate in place and face frontier clusters that are within

radius r and are not occluded by obstacles. Rotation is done

as much as possible within the feature threshold. In other

words, when the number of the associated map points is

lower than a threshold (100 in our experiments), the robot

will stop the proximity exploration and rotate back. This

exploration enables the robot to acquire more features and

gain more information of M . After doing so, the replanning

has more opportunities for a feasible path toward the goal.

The planning methodology is discussed next.

C. Path planning

Our path planning is based on the RRT* [7] to find a

distance-optimal path P ⊂ Cfree to the goal. The RRT*

planner incrementally extends a search tree in C with some

bias toward the goal. In each iteration, a node in the

tree is extended towards a randomly sampled node in the

configuration space. The tree is extended to the sampled

point only if the edge connecting them is feasible. That

is, discretized states along the edge are checked whether

they satisfy collision and map points constraints. Using the

reconstructed map M , each state is checked whether it is not

in collision with occupied cells or within frontier cells. In

addition, the approximated number of associated map points

from that state must be above the pre-defined threshold λ.

This is to ensure that the robot observes enough map points

along the path and avoids tracking failure. If the edge is

feasible, the sampled node is added to the tree followed by

the rewiring phase to maintain optimality.

The planning will run for a pre-defined amount of time in

an attempt to find a solution and optimize the path. Due

to the uncertainties along the motion and the constraints

described above, the planner will not be able to plan a

full path reaching the goal if the goal region has not been

explored. Therefore, the intermediate planning output will

be a feasible path reaching as close as possible to the goal.

After reaching the intermediate goal, the robot will replan

based on new information gained during the traversed path.

The overall replanning and path traverse strategy is discussed

next.

D. Algorithm

Algorithm 1 describes the main algorithm for motion

toward the goal while planning, mapping the environment

and proximity exploration. It starts by updating the OctoMap

and VSLAM map. Then, a path is planned and executed from

the current pose toward the goal. The planner will return

a path close as possible to the goal based on the current

knowledge of the environment. If failed to reach the goal in

this iteration, frontier regions are identified and explored by

simple rotation toward them. This scheme will be repeated

until the goal is reached.

VI. EXPERIMENTS

In our experiments we first present validation for the

proposed MAM. Then, we present experimental navigation

results in various scenarios to demonstrate the performance

of our approach. Videos of the experiments are included in

the supplementary material.

Fig. 4. Evaluation of the map points association model (MAM).
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Algorithm 1 Main algorithm

Input: Start state xs and goal state xg .

1: xcur ← xs

2: while true do
3: M ← UpdateMap()
4: D ← Update VSLAM Map()
5: P ← plan(xcur,xg)
6: Execute path P .

7: xcur ← CurrentPose(D)
8: if xcur = xg then
9: return success.

10: end if
11: W ← FrontierClusters(M)
12: for all q ∈ W do
13: e ← edge(q,xcur)
14: if distance(q,xcur) < r and e ∈ C̃free then
15: Rotate toward q.

16: end if
17: end for
18: Rotate back to angle in xcur.

19: end while

Fig. 5. Evolution of a successful trial using the proposed method in
environment I. The robot manages to turn on the corner by backing up
while using richer regions of features. Legend is as in Figure 6.

A. Implementation setup

Our proposed algorithm is implemented in the Robot

Operating System (ROS). Thus, integration to any system

supported in ROS is simple. The following experiments were

conducted in various environments using the Jackal ground

robot by Clearpath Robotics, on which an Xbox Kinect

camera was mounted. An Intel-Core i7-6600U Ubuntu ma-

chine runs Algorithm 1 and the path following control. In

particular, it runs ORB-SLAM and builds the OctoMap. In

addition, it uses the Open Motion Planning Library (OMPL)

[24] for the RRT* planner. The open-source implementation

code is available at https://github.com/XinkeAE/
Active-ORB-SLAM2.

B. Map points association model validation

In this section, we assess the effectiveness of our predictive

model (MAM) for the number of associated map points.

ORB-SLAM is performed on three ground robot navigation

sequences of TUM-RGBD dataset [25] (fr2/pioneer 360,

fr2/pioneer SLAM, and fr2/pioneer SLAM2). Each sequence

(a) (b)

Fig. 6. (a) Tracking failure when running naive planning (without a feature
constraint) in environment I. (b) A successful trial in environment II when
using the proposed approach and a tracking failure when running naive
planning.

is run for three trials. We record the number of actually

associated map points and the number computed with MAM.

We compute the absolute prediction error in different ranges

of associated map points. In addition, we assess the effec-

tiveness of our model by performing an ablation study. The

results are shown in Figure 4. We compare our MAM with

a predictive model while only considering the camera’s field

of view (map points satisfying condition 1 in section IV),

considering scale invariance region and camera field of view

(map points satisfying condition 1 and 2 in section IV), and

considering observation direction, scale invariance region

and camera field of view (map points satisfying condition 1,

2, and 3 in section IV). The results demonstrate the benefit

of each condition proposed in section IV in predicting if

a map point can be associated. In addition, we can see that

applying the recognition probability can result in a significant

improvement in prediction because of noise consideration in

map points association.

C. Experimental results

The performance of the proposed approach is validated in

two environments where passing through low feature regions

is necessary. For each of the environments I and II, start and

goal configurations were defined and the minimal possible

path lengths (disregarding the feature tracking constraint) are

9.23 m and 12.8 m, respectively. We first ran 10 naive trials

where the distance-optimal planner considers only collisions.

In all trials, tracking failure occurred while approaching a

wall poor of features. Figures 6a and 6b show examples of

tracking failures in both environments. It is important to note

that map points seen on the free space are points on the floor.

SLAM has difficulty associating these points and they are

considered unreliable.

Next, we executed 10 trials of Algorithm 1 in both

environments with αmax = 30◦ and λ = 60. An evolution

of the map and path during motion in environment I is

illustrated in Figure 5. Here, the robot approached the corner

backwards while initializing and associating richer regions

of map points. Once in the corner, it could rotate toward

the goal with enough features. This solution was repeated in

all successful trials. It is important to mention that without

the proximity exploration phase, the robot would have just

kept replanning toward the goal without acquiring new
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TABLE I

EXPERIMENTAL RESULTS

env. I env. II
Success rate w/ constraint 90% 80%
Success rate w/o constraint 0% 0%
Avg. path length [m] 12.55 17.6

information. It will not be able, however, to approach the

goal due to the feature threshold and since the planner will

yield similar paths. Proximity exploration on the other hand

provides the robot with more planning options. A successful

traversed path in environment II is seen in Figure 6. Here,

the robot approached a point just before the turn and used

map points on the doorstep to acquire more map points in

regions after the turn. Once performed, a feasible path around

the corner could be acquired. The curve in the middle of

the path is due to a feature-rich poster on the wall. The

robot approached it while acquiring more information. Then,

it replanned.

The success rates of the trials and the mean path length are

seen in Table I. Failed trials with the proposed method are

due to errors in the state estimation. During the experiments,

we observed accumulating deviations due to hardware heat-

ing which affected the localization. Thus, the failed trials

were the latter ones. Nonetheless, we have validated the

approach and shown that tracking failure can be avoided by

planning under a feature constraint.

VII. CONCLUSIONS

In this paper we have presented a framework for planning

and traversing a path by a mobile robot toward a goal and

through an unknown environment. The robot is equipped

with a Kinect camera to map its proximity, identify obstacles

and localize itself. VSLAM is used to build a map points

association model, so that the number of associated map

points at each pose can be predicted. With that model and

the contemporary map, a real-time distance-optimal RRT*

planner can plan a path that satisfies two constraints: a path

free of collisions and the number of map points observed at

each point is above a desired threshold. A methodology of

replanning and proximity exploration enables the traverse of

the environment without collisions and tracking failure. We

have demonstrated the method through experiments in two

environments with high success rates.
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